Showing posts with label ruminants. Show all posts
Showing posts with label ruminants. Show all posts

Sunday, 10 December 2023

Oligocene (Pt 6): Devil's Corkscrews and the Grasseater That Wasn't

Leptomeryx
The Grande Coupure was, strictly defined, an event unique to Europe, caused by the drying up of the water channels separating it from Asia. However, it was compounded by a dramatic worldwide cooling event, and, if the Coupure itself didn't affect more distant lands, the climate changes certainly did. Due to some particularly well-preserved geological deposits of the right age, as well as the obvious convenience for Western researchers, this is particularly well-studied in North America.

Deposits across the continent show a sudden change in the climate at around the dawn of the Oligocene. By 'sudden' in this context, we mean over the course of hundreds of thousands of years, so it's hardly something you would have noticed had you been there at the time, but it's still rapid as such things go. The exact nature of the changes, and the speed at which they appear to have happened, depend on which part of the continent we're talking about, but nowhere was unaffected.

Sunday, 15 October 2017

Do Kangaroos Chew the Cud?

Mammals that eat a lot of grass, or other relatively low-quality vegetation, have to process their food thoroughly to extract the maximum amount of nutrition. I've previously discussed how this works in some detail, but, in general, there are two approaches. In "fore-gut fermenters", the stomach is divided into multiple chambers, allowing the animal to ferment its food, then bring the solid parts back up to the mouth to re-chew ("chewing the cud"), before sending it back to finish the job. This is the system found in cows, deer, camels, and many other animals, collectively known as "ruminants".

The second approach is to place the fermentation chamber behind the stomach, down in the colon. This is less efficient, but quicker, and is the arrangement found in horses, rhinos, and a number of other animals. Rabbits are also "hind-gut fermenters" of this sort, but take the additional step of re-eating the fermented food once it passes out of their back end for the first time.

I mentioned in passing in my previous post that kangaroos are fore-gut fermenters, but that they are not ruminants, and have a slightly different system. Today, I'm going to explain what it is that they do do. (Much of what follows applies equally to wallabies, and, to a lesser extent, rat-kangaroos).

Sunday, 16 December 2012

Q&A 2012

This is a synapsid, and not a reptile. Yes, really.
This will be the last post at Synapsida before the New Year, so I thought I'd do something a little different this time. A lot of the hits on this blog are from Google searches, with a few from similar services like Bing. Often, the searches that bring people here are questions, and the blogger.com interface lets me see what those questions were. I don't check it religiously, so I'm sure there must be many questions that brought people here that I've never seen. But, just for fun, this week I'm going to answer some of the ones I have seen.

It's not going to help the people who asked the questions in the first place, of course. And, if anyone asks the question again, there's no guarantee they'll be directed to this page, rather than wherever they were directed before. But what the heck - why not, right?

So without more ado:

Is [X] a Synapsid?


This seems to be among the top two or three questions that bring people to the site. Is a cow a synapsid? Is a tiger a synapsid? What about a monkey? Or a kangaroo? And so on.

Sunday, 18 December 2011

Grazers and Browsers - and how to tell them apart without watching

Wildebeest are grazers - note the squarish muzzle
One advantage of studying the fossils of prehistoric mammals, as opposed to dinosaurs, is that mammals are still around today, while non-avian dinosaurs aren't. That gives us the ability to compare fossil species with living ones, and be fairly confident that our comparisons make sense. That's not to say, of course, that we can't infer quite a lot from the shape and structure of dinosaur bones, and work out details of their lifestyle and habits. But there's nothing much like non-avian dinosaurs around today, so there will inevitably be some guesswork involved when we do - educated guesswork, to be sure, but guesswork none the less.

Although the same can be said of fossil mammals - especially the stranger ones - in many cases, we can be more confident that our educated guesses are likely to be accurate. For example, sabre-tooth cats were, well... cats. So we can look at, for example, the proportions of their limbs, compare them with living cats, and deduce whether they were more like, say, jaguars, than they were like  leopards. Because leopards, jaguars, and sabre-tooths are, in many respects, quite similar, it's pretty likely that inferences drawn from the first two will apply to the third, unless there's some good reason to suppose otherwise. We know what cats are like, and sabre-tooths were cats, so that tells us a lot.

And what about herbivores? Herbivory includes a range of different diets, such as animals that feed mainly on seeds, or fruit. But large mammalian herbivores tend to have two possible feeding strategies: grazing and browsing. The best way to tell the two apart would be by examining their dung, and, failing that, the structure of their digestive systems could well be helpful. Neither, of course, are possible, if all you have is a fossil skeleton, but, fortunately, there are other clues we can examine.

Sunday, 7 August 2011

Why Cows Have Four Stomachs

(If all you want to know is what animals do, and what animals don't, have a four-chambered stomach, the shorter answer is here).

The stomach is an organ found in almost all vertebrates. Although there is considerable variation among the different groups, and there are some fish that don't have one at all, in general it has two functions. Firstly, it helps to store food for later digestion so that you don't constantly have to be eating, and secondly, it begins the digestion of food both by physically grinding it up and by mixing it with acid and digestive enzymes. Sometimes these functions are separated to some extent - for example, birds have a large crop for food storage, and a smaller true stomach below it that digests the food, and includes a muscular, grinding gizzard (a useful thing when you have no teeth). But the most complex stomachs of all are found in mammals.

A cow does, indeed, have four stomachs. Or, at least, it has a stomach divided into four separate chambers, which amounts to the same thing. Nor, of course, are cows alone in this. It's a feature found throughout the cattle family, which is a fairly large group consisting of over a hundred species - most of them antelopes, although it also includes the sheep and goats. The cattle were not the first family to evolve the feature, and we know that because its also found in all their close relatives, including such animals as deer and giraffes. In fact, the only truly cloven-hoofed animals that don't have four stomachs are the pigs and peccaries - which is why they aren't kosher.

In fact, we can group all the mammals that have this four-chambered stomach together. This group are called the "pecorans". Why not just "ruminants"? We'll get onto that later.