The scientific classification of living organisms we use today has its origins in the 1758 edition of Systema Naturae, by Carl Linnaeus. Raccoons live only in the Americas, but even in 1758, Linnaeus was aware of the existence of raccoons, having heard about them from his friend Peter Kalm, who had observed them in what were then the colonies of Pennsylvania and New Jersey. Based on Kalm's description, Linnaeus named this new species Ursus lotor - the "washing bear". It was one of four species of "bear" that he identified in that work, only one of which we'd still consider to be such today.
Saturday 28 January 2023
The Raccoon Family
Sunday 22 January 2023
Miocene (Pt 37): The Miocene Oceans
Xiphiacetus |
At a more detailed anatomical scale, that would have been less true and many of the creatures would not have been as closely related to the modern forms as one might have supposed. Today, the largest number of cetacean species belong to the "true" or "oceanic" dolphin family, including not only all of the sea-going dolphins but some larger animals such as killer whales. But in the Miocene, true dolphins seem to have been comparatively rare and we know of very few fossils predating the subsequent, Pliocene, epoch.
Sunday 15 January 2023
Grumpy Old Voles?
Meadow vole (a related species) |
Drawing parallels between these changes and the way that humans develop isn't without risk; the complexity of our society, the existence of culture and so on significantly colour how we behave. But that's not to say that such parallels don't exist, and can't tell us anything, even if it's only how we evolved. We are, after all, still affected by our biology and evolutionary history in at least some respects. For instance, it's notable that exactly how animal pups are raised by their mother can affect how they behave as adults, even if the details are going to be less complex than they are with human child-rearing.
Sunday 8 January 2023
Dunnarts in the Sandhills
For example, it is useful to conservation efforts to understand not only where a given species lives, and the habitat requirements it may have, but how it makes use of that environment. (Obviously, there's more to it than this, for example, how different species in the same area interact with one another but we'll stick with this one point for today). What particular features of the habitat are important to it? How much land does it need? How is its population distributed across the area?