Showing posts with label geology. Show all posts
Showing posts with label geology. Show all posts

Sunday, 19 March 2023

Age of Mammals: The Oligocene (Pt 1)

It's been over a decade since I started including bimonthly looks at specific slices of Earth's past in this blog. In that time, I have covered three epochs: the Pleistocene, Pliocene, and Miocene. Together with the current Holocene epoch, these comprise what we currently consider to be two "periods": the Quaternary and Neogene. Both of these are dominated, more or less, by mammals of the sort we'd generally recognise today, even if the details are different. All of the earlier chunks of time since the extinction of the non-avian dinosaurs, however, constitute a different period, the Paleogene, where this was much less true.

When Charles Lyell devised the current system of dividing the "Age of Mammals" into epochs in 1833, he originally defined four. A few years later, he revised this to five, but even then, the entirety of what we'd now call the Paleogene was placed into a single epoch, the Eocene. In 1854, however, German palaeontologist Heinrich Beyrich, split off the later part of the Eocene into a new epoch, which he saw as a distinct period of transition in the development of fossil seashells. He called this the Oligocene, and it proved useful beyond his original mollusc-based definition, and so has remained in use to this day. (Beyrich's wife, incidentally, was a children's author, and made the unusual step of favourably commenting on the work of Charles Darwin in a novel for young girls at a time when it was still controversial).

Sunday, 10 July 2022

The Dolphins of Switzerland

Kentriodon
The Mediterranean is very nearly an inland sea. Its only natural connection to the world's wider oceans is through the Strait of Gibraltar between Spain and Morocco, a passage just 13 km (8 miles) wide at its narrowest point and in places just 300 metres (1,000 feet) deep; pretty shallow as such things go. It's probably because of this that some of the larger whales that inhabit the Atlantic (blue whales, humpback whales, etc.) are rarely if ever seen venturing into its waters.

Dolphins are a different matter, with the majority of North Atlantic dolphin species also being commonly seen in the Mediterranean, albeit in some cases only in its most westerly waters. This includes some of the really big dolphins that we'd normally call "whales", such as the killer whale, and there are three species of genuine whale that live there, too. The connection between the Mediterranean and the Atlantic has not always been there, however; for a long time during the Late Miocene, the two bodies of water were separated by a land bridge between Spain and Morocco, entirely cutting the Mediterranean off until it ended in the cataclysmic Zanclean Flood

Sunday, 11 June 2017

Age of Mammals: The Miocene (Pt 1)

Five years ago, I started a series of posts in which I looked at the world, and its mammalian fauna, during the time of the Ice Ages. My plans as to how I was going to do that changed quite rapidly, and the earlier posts aren't really in the same format that I later settled in to. Nonetheless, since that time I have covered not only the Pleistocene epoch of the Ice Ages, but also the Pliocene, which immediately preceded it. Yet, even taken together, these two epochs represent only a relatively short slice of the Age of Mammals.

We currently divide the Age of Mammals - the time since the extinction of the non-avian dinosaurs - into three broad periods: the Paleogene, Neogene, and Quaternary. The last of those includes only the Pleistocene and the brief, human-dominated, time since it ended. The Neogene, however, is also dominated by more-or-less modern kinds of animal, and it is further divided into two epochs: the later Pliocene, which I have already covered, and the earlier Miocene, which I haven't.

Perhaps the first thing to grasp about the Miocene is that, compared with the epochs that followed, it is remarkably long. It lasted, as currently defined, from about 23 million to 5 million years ago. That makes it over three times as long as the Pliocene and Pleistocene put together. As you might expect, the world changed far more over this timespan than it did during the subsequent epochs; we're not just talking a couple of million years here, but it a much more substantial chunk of time. It's only because it's so much further back that it makes sense to do this - we just don't have the same sort of fine detail available, since so much of it has been erased in the time since it all happened.

Sunday, 23 November 2014

Pliocene (Pt 2): Survivors of the Zanclean Flood

For verily, I shall inherit the continent!
As I noted last time, officially, the dawn of the Pliocene - the autumnal epoch immediately prior to the Ice Ages of the Pleistocene - is marked by one of many changes in Earth's magnetic polarity. However, that particular event wasn't picked at random; there really were visible changes at the time. And, in Europe, none were more significant than the Zanclean Flood.

To understand what this is, though, we have to turn to the latter part of the preceding epoch, the Miocene, and take a look at the Messinian Salinity Crisis. The Miocene was much longer than the two epochs that followed, long enough that, over the course of it, the continents moved about a fair bit. Towards the end of the epoch, then, moving northwards, Africa hit Europe.

Due to the shape of the respective continents, however, this didn't result in the sort of massive mountain building that we see in present day Tibet (or, at least, it hasn't yet - the continents are still moving). But it did have a dramatic effect nonetheless. Crucially, the continents didn't just nudge up against one another in the east, creating what is now the Sinai, but also in the west, creating a land bridge between modern Spain and Morocco.

The Mediterranean Sea became land-locked. The Mediterranean climate of the day was even hotter and drier than it is now, and, free from any connection to the Atlantic and Indian Oceans, the sea began to evaporate. Over the course of hundreds of thousands of years, the sea level dropped. Not just a little bit, but by as much as three miles.

Saturday, 27 September 2014

Age of Mammals: The Pliocene (Pt 1)

I suspect that when most members of the public think of prehistoric animals after the time of the dinosaurs, they think of the Pleistocene, the time of the Ice Ages. This was a time of bitter cold, the time of cave men, mammoths, and Smilodon cats. Even among scientists, it's easily the most researched of the various bygone epochs that make up the Age of Mammals, not least because it's the one closest in time to our own, and therefore the easiest to study.

But there are five other epochs that precede the Pleistocene within the Age of Mammals, and, compared with most of them, it isn't even very long. Heck, it isn't even 5% of the total. As it happens, though, the epoch that immediately preceded the Ice Ages, the Pliocene, isn't much longer. If we imagine, as we're often invited to, the entire history of the Earth as a single year, the Pliocene is, very roughly, the period between 2 and 7 p.m. on the evening of the 31st December. That's not exactly a large chunk.

On the other hand, on a human scale, the Pliocene is vast; the long autumn that leads from the summer of the Miocene into the freezing cold of the great ice sheets that follow. When I first discussed the Pleistocene, I used the example of a TV documentary that whizzes through the whole of history. In fact, it takes one minute to cover each decade of time. So the entire history of the world since the outbreak of World War I is covered in just the final ten minutes. Your life so far is, I can assume with some confidence, covered in even less time than that.

Sunday, 1 July 2012

Age of Mammals: the Pleistocene (Pt 1)

A scene from northern Spain
The "Age of Mammals" is the informal name for the Cenozoic era, the 65 million year slice of Earth's history from the extinction of the dinosaurs to the present day. It is so named because mammals have been the dominant large, land-dwelling animals throughout the era.

Of course, "large, land-dwelling" is something of an arbitrary qualification, and one more rooted in the natural prejudices of our own species than in an actual reflection of Earth's biodiversity. The most numerous animals throughout the era, and, for that matter, through the Age of Reptiles that preceded it, would have been insects. But, unless you're standing in the middle of a swarm of midges, most people don't notice insects in the same way they would notice, say, a herd of antelope, or a prowling tiger. Mammals aren't even the most numerous vertebrates today, and, by sheer species count, it's the fish that are dominant, and some of those are pretty big.

Even on land, in terms of number of species, mammals are the least numerous of the four vertebrate classes - birds come in first, and reptiles still hold on to second place, followed by amphibians. Of course, most of those reptiles are small lizards, and birds are also generally quite small. Even so, there are ostriches, crocodiles, and anacondas, among others, and, in fairness, most mammal species are mouse-sized. So there's a reasonable case that what this should really be is the Age of Birds. But I, for one, am going to stick with the standard term.